

EUROPEAN CREDIT TRANSFER AND ACCUMULATION SYSTEM (ECTS) pl. M. Skłodowskiej-Curie 5, 60-965 Poznań

COURSE DESCRIPTION CARD - SYLLABUS

Course name				
Computer modeling of materials at the atomic scale				
Course				
Field of study		Year/Semester		
Technical Physics		3/5		
Area of study (specialization)		Profile of study		
		general academic		
Level of study		Course offered in		
First-cycle studies		Polish		
Form of study		Requirements		
full-time		elective		
Number of hours				
Lecture	Laboratory classes	Other (e.g. online)		
30	30			
Tutorials	Projects/seminars			
Number of credit points				
5				
Lecturers				
Responsible for the course/lecturer:		Responsible for the course/lecturer:		
dr hab. Arkadiusz Ptak, prof. PP				
arkadiusz.ptak@put.poznan.pl				
Wydział Inżynierii Materiałowej i Fizy Technicznej	ki			

Piotrowo 3, 60-965 Poznań

Prerequisites

Knowledge of quantum and classical physics at the level achieved after two years of study in the field of technical physics. The ability to solve simple physical problems based on the acquired knowledge, the ability to obtain information from indicated sources. Understanding the need to expand your competences, readiness to cooperate within the team.

Course objective

1. To provide students with basic knowledge and skills in the field of computer modeling of materials, especially molecules and nanoparticles, at the atomic scale.

2. To develope students' skills in qualitative and quantitative analysis of physical phenomena occurring at the molecular and atomic level, based on computer simulations.

EUROPEAN CREDIT TRANSFER AND ACCUMULATION SYSTEM (ECTS) pl. M. Skłodowskiej-Curie 5, 60-965 Poznań

Course-related learning outcomes

Knowledge

1. The student knows and understands the basic principles of molecular modeling based on the laws of classical physics [K1_W01].

2. The student knows and understands the basic methods of atomic scale modeling based on the ideas of quantum physics, including the first principles, semi-empirical and DFT methods (i.e. based on the theory of electron density functional) [K1_W04].

Skills

The student is able to:

1. correctly use standard analytical tools, including numerical and computational ones, to solve detailed physical and technical problems; can critically evaluate the results of such an analysis [K1_U09];

2. carry out computer modeling and simulations with the use of standard software using classical and quantum methods [K1_U19];

3. choose the modeling method to solve a physical problem, as well as determine the necessary computer resources to perform a computational task [K1_U02, K1_U09, K1_U14].

Social competences

The student acquires competences allowing for:

1. responsible work on the assigned task, both independently and in a team, assuming various roles in it [K1_K01];

2. understanding the need and determining the possibilities of continuous training in order to improve professional and social competences [K1_K03].

Methods for verifying learning outcomes and assessment criteria Learning outcomes presented above are verified as follows: Method of assessment Learning outcome (symbol) Assessment criteria Lecture: W01, W04, U09, K01, K03 open question test 3: 50.1%-70.0% 4: 70.1%-90.0% 5: from 90.1% Laboratory: U09, U14, U19, K01, K03 assessment of activity, report 50.1%-70.0% 3: 4: 70.1%-90.0%

EUROPEAN CREDIT TRANSFER AND ACCUMULATION SYSTEM (ECTS) pl. M. Skłodowskiej-Curie 5, 60-965 Poznań

5: from 90.1%

Programme content

1. Introduction to computer modeling and simulation.

2. Modeling on the atomic scale; types of calculations: energy optimization, electronic properties and the resulting ones, molecular dynamics simulations.

3. Methods of classical (molecular) mechanics.

- 4. Methods of quantum mechanics:
 - a) ab-initio and semi-empirical quantum chemistry methods;

b) methods based on the density functional theory (DFT) - Hohenberg-Kohn theorem, Kohn-Sham equation.

- 5. Comparison of classical and quantum methods.
- 6. Molecular dynamics simulations.
- 7. Elements of computer aided drug design ligand docking.

Teaching methods

Conversational lecture: multimedia presentation, simulation demonstrations.

Laboratory exercises: carrying out computer modeling and simulations, individual projects, discussion, team work.

Bibliography

Basic

1. Materials from lectures (in Polish)

2. Understanding Molecular Simulation. From Algorithms to Applications, D. Frenkel, B. Smit, Academic Press

Additional

1. Molecular Modeling Techniques in Material Sciences, J.-R. Hill, L. Subramanian, A. Maiti, Taylor&Francis 2005

2. Molecular Modeling and Simulation. An Interdisciplinary Guide, T. Schlick, 2nd edition, Springer 2010

3. http://www.molnet.eu (in Polish)

EUROPEAN CREDIT TRANSFER AND ACCUMULATION SYSTEM (ECTS) pl. M. Skłodowskiej-Curie 5, 60-965 Poznań

Breakdown of average student's workload

	Hours	ECTS
Total workload	125	5,0
Classes requiring direct contact with the teacher	65	
Student's own work (literature studies, preparation for	60	
laboratory classes, preparation for tests/exam, report		
preparation) ¹		

¹ delete or add other activities as appropriate